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What this paper studies

Questions:

1 How well do RNN seq2seq models learn these functions?

2 What are the factors that influence the learning results?
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Learning tasks

1 Identity : w → w . Ex: Identity(abc) = abc.

2 Reversal : w → wR . Ex: Rev(abc) = cba.

3 Total Reduplication : w → ww . Ex: TotalRed(abc) = abcabc.

4 Quadratic Copying: w → w |w |. Ex: QuadCopy(abc) = abcabcabc.

Zhengxiang Wang, ICGI 2023
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FST-theoretic complexity hierarchy (Bojanczyk et al., 2019)

Darker color → more complexity.
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RNNs (Elman, 1990; Cho et al., 2014; Hochreiter and Schmidhuber, 1997)

General formula: ht = f (ht−1, xt).

For transductions, RNNs work like FSTs: read and write.

Three common variants: Simple RNN (SRNN), GRU, LSTM.

Zhengxiang Wang, ICGI 2023
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RNN seq2seq models (Sutskever et al., 2014; Bahdanau et al., 2015)

Structure: RNNencoder → RNNdecoder .

For transductions, read all before writing any, unlike RNNs/FSTs.

Attention (Bahdanau et al., 2015; Luong et al., 2015): “weighted
skip connections” (Britz et al., 2017)

Zhengxiang Wang, ICGI 2023
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Learning input-target alignments

At any decoding time steps, the four tasks all require full recall of the
input x = (x1, ..., xn) to be aligned with the target y = (y1, ..., ym).

Zhengxiang Wang, ICGI 2023
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Data

There are four mutually disjoint datasets for each task and the input
sequences are identical across tasks. Σ = {a, b, c , ..., z}.
Test set: in-distribution; gen (generalization) set: out-of-distribution

Dataset Input length # of pairs per length # of pairs
Train 6-15 1,000 10,000
Dev 6-15 1,000 10,000
Test 6-15 5,000 50,000
Gen 1-5 & 16-30 5,000 100,000

Zhengxiang Wang, ICGI 2023
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Model and training details

Training conditions are identical expect for the three controlled
factors: task, attention, RNN variant.

Each model was trained and evaluated for three runs, with the best
aggregate results from a run selected for interpretations.

Model configuration and training details. Others: Xavier initialization (Glorot and Bengio, 2010);

gradients clipping (Pascanu et al., 2013); teaching forcing (Williams and Zipser, 1989) etc.

Zhengxiang Wang, ICGI 2023
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Evaluation metrics

All metrics are measured from the initial symbol to the end-of-sequence

symbol of the target sequences Y against the related output sequences Ŷ.

1 Full-sequence accuracy: exact match rate between Y and Ŷ

2 First n-symbol accuracy: first n-symbol match rate between Y and Ŷ

3 Overlap rate: pairwise match rate between Y and Ŷ

Full-sequence accuracy used as the main metric. Other two metrics only
reported when needed.
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Full-sequence accuracy: aggregate and per-input-length
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Limited out-of-distribution generalization abilities
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Attention makes learning more efficient and robust

Attentional models almost always outperform the related
attention-less counterparts on the per-input-length level and thus on
the aggregate level

Follow-up experiment in total reduplication shows that attentional
models with significantly few training resources still outperform
attention-less models (see Appendice).
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Novel complexity hierarchy for attention-less RNN seq2seq

For attention-less models: Quadratic Copying > Total Reduplication >
Identity > Reversal. For FSTs, however, Reversal > Identity.

For attentional models: follow-up experiments indicate that Quadratic
Copying > Total Reduplication > Reversal > Identity.
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Results related to RNN seq2seq variant

See Appendice section for reference.

GRU/LSTM seq2seq more expressive than SRNN seq2seq, with a
consistent exception for reversal for unclear reasons.

GRU/LSTM seq2seq fits quadratic copying to certain extents, but
SRNN seq2seq cannot. LSTM counts (Merrill, 2019b; Delétang
et al., 2022).

SRNN seq2seq cannot count: it somehow learns periodically
repeating the input sequences without knowing when to generate
the end-of-sequence symbol.

Zhengxiang Wang, ICGI 2023
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Generalization abilities

RNN seq2seq models, regardless of attention, tend to approximate
the training or in-distribution data, instead of learning the underlying
transduction functions.

Their out-of-distribution generalization abilities are limited for their
auto-regressive nature. Let n be the target length, ε the expected
error rate. The probability of generating the target is as follows:

P(target) = (1− ε)n

As a result, fitting and generalizing to longer strings are inherently
more complex and eventually impossible, under finite settings.
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Attention

Attention greatly improves the learning efficiency for the four tasks,
which echoes its original motivation, namely, “learning to align”
(Bahdanau et al., 2015).

The reason why attention does not overcome the out-of-distribution
generalization limitation of RNN seq2seq is that it does not change
the auto-regressive nature of the models.
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Why Identity > Reversal for attention-less models

Identity > Reversal → long-term dependency learning issue of RNNs
trained with backpropagation (Bengio et al., 1994): exploding and
vanishing graidents (Pascanu et al., 2013; Chandar et al., 2019).

Reversal contains many initially shorter input-target dependencies,
making iteratively optimizing the model parameters easier (Sutskever
et al., 2014) than Identity with backpropogation.
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Language recognition viewpoint for the novel hierarchy

For attention-less models: Quadratic Copying > Total Reduplication >
Identity > Reversal.

Zhengxiang Wang, ICGI 2023
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Generality of the findings: results of two sorting tasks

Re-run the main experiments on the two sorting tasks.

The two tasks do not require static input-target alignments. For
example, for w ∈ {abc, acb, bac, bca, cab, cba}, Ascend(w) = abc
and Descend(w) = cba. Learning via counting is easier and viable.

Attentional Attention-less
Task Dataset SRNN GRU LSTM SRNN GRU LSTM

Train 100.00 100.00 100.00 37.28 100.00 100.00
Ascend Test 99.03 99.69 99.73 6.48 99.50 99.74

Gen 10.89 31.06 31.43 0.02 42.72 35.66
Train 100.00 100.00 100.00 24.01 100.00 100.00

Descend Test 99.05 99.78 99.69 0.49 99.19 99.66
Gen 14.65 31.12 32.35 0.00 34.33 37.08

Aggregate full-sequence accuracy for ascending and descending sorting.
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Generality of the findings: results of two sorting tasks

Out-of-distribution generalization limitation remains.
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Future works

Besides some unexplained puzzles brought up here, good continuations of
the current research may include experimenting with

1 other types of seq2seq models, such as CNN seq2seq (Gehring et al.,
2017) and transformer (Vaswani et al., 2017);

2 Tape-RNN, which show promising generalization results in various
transduction tasks (Delétang et al., 2022);

3 and other novel transduction tasks.

Note: Task complexity is strongly tied to the structure of the learner.
Thus, over-interpretations of our results beyond the context of this study
(e.g., RNN seq2seq) are discouraged.
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Attention makes learning more efficient and robust

Follow-up experiment in total reduplication where attentional models
only used 1/12 training examples, 1/9 parameter size, and 1/3 training
epochs, compared to the attention-less ones.

Attentional Attention-less
Dataset SRNN GRU LSTM SRNN GRU LSTM
Train 100.00 100.00 100.00 94.99 100.00 100.00
Test 99.20 99.53 99.58 84.93 90.21 91.86
Gen 35.20 14.07 19.37 0.00 5.10 4.54

Zhengxiang Wang, ICGI 2023
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GRU/LSTM seq2seq more expressive than SRNN seq2seq

With a consistent exception for reversal for unclear reasons.
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GRU/LSTM seq2seq more expressive than SRNN seq2seq

GRU/LSTM seq2seq fits quadratic copying to certain extents, but SRNN
seq2seq cannot. LSTM counts (Merrill, 2019a; Delétang et al., 2022).
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SRNN seq2seq cannot count

Significantly enlarging model size for SRNN seq2seq helps little, if any:
embedding size 128→ 384, hidden size 512→ 640/1024 (attn/attn-less).

Attentional Attention-less
Dataset Full-seq First n-symbol Overlap Full-seq First n-symbol Overlap
Train 3.43 92.43 98.65 0.00 0.05 3.80
Test 3.00 90.92 98.53 0.00 0.05 3.81
Gen 2.79 84.23 92.82 0.00 0.19 3.68

Zhengxiang Wang, ICGI 2023
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SRNN seq2seq cannot count

SRNN seq2seq learns somehow periodically repeating the input sequences
without knowing when to generate the end-of-sequence symbol!

Test Gen
Model Run#1 Run#2 Run#3 Run#1 Run#2 Run#3
SRNN 67.95 84.16 68.33 67.07 68.42 30.89
SRNNLarge 84.86 82.14 96.20 62.89 71.70 80.81
GRU 26.42 25.49 26.82 23.66 10.67 14.15
LSTM 26.83 25.51 25.52 6.07 8.72 7.56

The test/gen set first n-symbol accuracy (%) for all the attentional models trained for quadratic

copying across three runs on the mapping w → w40. Full-sequence accuracy always is 0.00%,
since the mapping is not what the models were trained for.

Zhengxiang Wang, ICGI 2023
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