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Clustering Document Parts:
Detecting and Characterizing 

Influence Campaigns from Documents

PROBLEM DEFINITION
• Influence campaign: A coordinated and strategic effort to influence the views of 

the target audience on certain matters of interest to the influencers. 
• As such, it cannot possibly be inferred from any single document in isolation!

• Detecting an influence campaign has two aspects:
Ø Classification à if a document reflects an influence campaign
Ø Clustering à grouping a cluster of documents reflecting an influence campaign
• Problems: (1) classification: biased to keywords; (2) clustering: hard to evaluate

• Assumption: influence campaigns à spreading a shared belief/theme of the 
influencers in a highly organized and thus consistent way 

• Our approach: cluster document parts à detecting influence clusters/documents

DATA EXPERIMENTAL SETUPS

RESULTS

• From a DARPA INCAS project

• Annotated on document collection 
level: if a collection of documents 
contain an influence campaign: US 
biolabs in Ukraine for bioweapons 

• Six genres: Twitter, Forum, News, 
Blog, Reddit, and Other, from Jan 
31 to June 30, 2022

• Task: predicting if a document reflects an influence campaign (from the positive 
document collection) without using lexical features (e.g., word embeddings)

• Metrics: precision, recall, F1, given the imbalances of labels 
• Classification algorithms: (1) Feedforward Neural Network (2) XGBoost
• Features: frequency counts of 95 general linguistic features + number of words
• Cluster features: 7 features, such as average cosine similarity, cluster size 

• Baselines: (1) Direct-document: applying the two classification algorithms on 
documents; (2) Direct-level: applying our clustering pipeline on whole documents

• Clustering aggregation: aggregating the clusters from different clustering setups 
to enhance the classification of both high-influence clusters and documents

• Each experiment was run for fives times with means + stdev results reported

PIPELINE

Input: a set of
raw documents

Preprocessing

Break each document into parts

• Choice 1: Sentences

• Choice 2: Beliefs, a multi-word text span 
where the author expresses a certain belief in 
Ø Example: “Jack did (not) go to NAACL 2024.”
Ø Interpretation: The author believes (does not 

believe) that Jack went to NAACL 2024. 

• Choice 3: Whole documents

SBERT 
Embedding

Clustering document parts

C1

C2

Cn

Identifying high-influence documents

KMEAN, 
HDBSCAN
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ü Our clustering approach outperforms the direct-document approach

ü Clustering document parts outperforms clustering whole documents

ü Cluster aggregation helps in virtually all cases (except document-level + FNN) 

ü Clustering with beliefs can be useful, but clustering sentences + XGBoost + 
Aggregation achieves best results
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Positive: documents reflecting an influence campaign. Negative: otherwise.
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